54.5. Substitution Method

Key points: (1) Ifferentionl ubtotion: If $u=g(x)$, then $d u=g^{\prime}(x) \cdot d x$.
(2) u-sub: $\int f(\underbrace{g(x)}_{u}) \cdot \underbrace{g^{\prime}(x) \cdot d x}_{d u} \frac{u=g(x)}{d u=g(x) d x} \int f(u) \cdot d u$

- Goal of U-Substitution Method: By changing the variable x into u, we convert the integral into one of those five basic integrals which we can deal wired.
- Basic integrals: $\int x^{n} d x=\frac{1}{n+1} \cdot x^{n+1}+C, \int \sin x d x=-\cos x+C, \int \cos x d x=\sin x+C$

$$
\int \sec ^{2} x d x=\tan x+C, \quad \int \sec x \cdot \tan x d x=\sec x+C
$$

(1) Deferential Notation and Composition of functions.
eg.1. $u=x^{2}+1, \quad \frac{d u}{d x}=\left(x^{2}+\right)^{\prime}=2 x \Rightarrow d u=2 x \cdot d x$.
e.g2. If $f(x)=\sqrt{x}$, $u=x^{2}+1$, then $f(u)=\sqrt{u}=\sqrt{x^{2}+1}$
(2) U-Sub method for indefinite integral
eg. 3. Evaluate $\int \sqrt{u} \cdot d u \stackrel{n=\frac{1}{2}}{=} \frac{1}{\frac{1}{2}+1} u^{\frac{1}{2}+1}+C=\frac{2}{3} u^{\frac{3}{2}}+C$
eg.4. $\int \sqrt{x^{2}+1} \cdot 2 x \cdot d x$. Set $u=x^{2}+1$. Accorchy to of 1. $d u=2 x \cdot d x$.
$=\int \sqrt{u} \cdot d u$. Plug in u and $d u$. By substitutity u and du
$=\frac{2}{3} u^{\frac{3}{2}}+C$
$=\frac{2}{3}\left(x^{2}+1\right)^{\frac{3}{2}}+C$ the integral of x turns into an integral of u watch simpler form, which we evaluate in ge 3.
Replace u by $x^{2}+1$ in the last step.

- The ley of u-sub is to find de light substitution U.

More crumples:
eg .5. Evaluate $\int x \cdot\left(2 x^{2}+1\right)^{3} \cdot d x$. Hint: $u=2 x^{2}+1$ is the ugly part. (14 倍解)

$$
\begin{aligned}
u=2 x^{2}+1 & , d u=4 x \cdot d x \Rightarrow x \cdot d x=4 \cdot d u \\
& =\int\left(2 x^{2}+1\right)^{3} \cdot x \cdot d x \\
& =\int u^{3} \cdot \frac{1}{4} \cdot d u
\end{aligned}=\frac{1}{4} \cdot \frac{1}{3+1} \cdot u^{3+1}+C
$$

end Evaluate $\int \frac{\sec \left(\frac{x}{2}\right) \cdot \tan \left(\frac{x}{2}\right)}{\sqrt{\sec \left(\frac{x}{2}\right)}} \cdot d x$. Hint: $u=\sec \left(\frac{x}{2}\right)$ is the ugly port.
$(14$ and $)$
$u=\sec \left(\frac{x}{2}\right), \quad d u=\sec \left(\frac{x}{2}\right) \tan \left(\frac{x}{2}\right) \cdot \frac{1}{2} \cdot d x$, chain me for $(\sec (x))^{\prime}$

$$
\begin{array}{rlr}
\Rightarrow 2 d u & =\sec \left(\frac{x}{2}\right) \cdot \tan \left(\frac{x}{2}\right) \cdot d x \\
=\int \frac{2 d u}{\sqrt{u}} & =\int 2 \cdot u^{-\frac{1}{2}} d u \\
& =2 \cdot \frac{1}{-\frac{1}{2}+1} \cdot u^{-\frac{1}{2}+1}+C \\
& =2 \cdot 2 \cdot u^{\frac{1}{2}}+C \stackrel{\sec \cdot \tan (\operatorname{loc}+\operatorname{tox}}{=} 4 \cdot\left(\sec \left(\frac{x}{2}\right)\right)^{\frac{1}{2}}+C
\end{array}
$$

- Linear substitution and mote general form of the five basic integrals.

$$
\begin{gathered}
* \int(a x+b)^{n}=\frac{1}{n+1} \cdot x^{n+1}+C, \int \sin (a x+b) d x=\frac{-1}{a}\left(\cos (a x+b)+C, \int \cos (a x+b) x x=\frac{1}{a} \sin (a x+b)+C\right. \\
\int \tan (x+b) \cdot \sec (a x+b) \cdot d x=\frac{1}{a} \sec (a x+b)+C, \int \sec ^{2}(a x+b) d x=\frac{1}{a} \cdot \tan (a x+b)+C . \\
\text { eg 7. } \int \sin (1-2 x) \cdot d x \frac{u=1-2 x}{\frac{d u}{}=-2 d x} \int \sin u \cdot \frac{d u}{-2}=\frac{1}{-2}(-\cos u)+C=\frac{-1}{-2} \cos (1-2 x)+C \\
\frac{d u}{-2}=d x
\end{gathered}
$$

(3) visub for definite integral.
eg .8. Evaluate the definite integral $\int_{0}^{2} \frac{1}{\sqrt{9-4 x}} d x$.
urgly port: $9-4 x . \quad u=9-4 x, \quad d u=-4 \cdot d x \Rightarrow d x=\frac{d u}{-4}$
Caution: $\int_{0}^{2} 0,2$ are for x. They also change as we substitute $9-4 x$ by u.

$$
\begin{aligned}
& \int_{x=0}^{x=2} \stackrel{u=9-4 x}{\longrightarrow} \int_{u=9-400=9}^{u=9-42=1}, \int_{u=9}^{u=1} \\
& \begin{aligned}
\int_{0}^{2} \frac{1}{\sqrt{9-4 x}} d x & \stackrel{u-9-4 x}{=} \int_{9}^{1} \frac{1}{\sqrt{u}} \cdot \frac{d u}{-4} \quad \text { use the flipping trick } \\
& =\int_{1}^{9} \frac{1}{4} \cdot u^{-\frac{1}{2}} d u
\end{aligned}=\left.\frac{4}{4} \cdot \frac{1}{\frac{1}{2}} u^{\frac{1}{2}}\right|_{1} ^{9} \\
&=\left.\frac{1}{2} \cdot \sqrt{u}\right|_{1} ^{9}=\frac{1}{2} \cdot \sqrt{9}-\frac{1}{2} \cdot \sqrt{1}=1
\end{aligned}
$$

eg. 9 . Evaluate $\int_{0}^{\frac{\pi}{2}} 3 \cdot \tan \left(\frac{x}{2}\right) \cdot \sec ^{2}\left(\frac{x}{2}\right) d x$. Hie: $(\tan)^{\prime}=\sec ^{2}$

$$
\begin{aligned}
& u= \tan \left(\frac{x}{2}\right) \cdot \quad d u=\frac{1}{2} \cdot \sec ^{2}\left(\frac{x}{2}\right) d x \cdot \int_{x=0}^{x=\frac{\pi}{2}} \rightarrow \int_{u=\tan 0}=0 . \\
& \quad 2 d u=\sec ^{2}\left(\frac{x}{2}\right) d x \cdot=1 \\
&=\int_{0}^{1} 3 \cdot u \cdot 2 d u=\left.6 \cdot \frac{1}{2} u^{2}\right|_{0} ^{1}=3 \cdot 1^{2}-3 \cdot 0^{2}=3
\end{aligned}
$$

(4). Symmetry integral.

If $f(x)$ is odd, ie., $f(-x)=-f(x)$, then $\int_{-a}^{a} f(x) d x=0$

eg .10. $f(x)=\sin x \cdot\left(x^{2}+1\right) \cdot \int_{-8}^{8} \sin x \cdot\left(x^{2}+1\right) d x=0$
since $f(-x)=\sin (-x) \cdot\left((-x)^{2}+1\right)=-\sin x \cdot\left(x^{2}+1\right)=-f(x)$ ($\sin x$ is add),

More examples and tints for webwork:
$\operatorname{lig}_{(14 \text { Final) }} 11 .(\operatorname{ww} 8) . \int_{8}^{11} x \cdot \sqrt{x-7} d x$. Hint: $u=x-7 . d u=d x$.
$=\int x \cdot \sqrt{u} \cdot d u$ there is solll are x left. Kepp substitutry

$$
=\int_{1}^{4}(u+7) \cdot \sqrt{u} \cdot d u
$$

wa the teletion $u=x-7 \Leftrightarrow u+7=x$.
$x=11 ~$

$$
=\int_{1}^{4} u \cdot u^{\frac{1}{2}}+7 \cdot u^{\frac{1}{2}} d u
$$

$$
x=8 \rightarrow u=x-7=1
$$

$$
=\int_{1}^{4} u^{\frac{3}{2}}+7 \cdot u^{\frac{1}{2}} d u=\frac{2}{5} u^{\frac{5}{2}}+\left.7 \cdot \frac{2}{3} u^{\frac{3}{2}}\right|_{1} ^{4}
$$

$$
\begin{aligned}
& 4^{\frac{5}{2}}=(\sqrt{4})^{5}=32 \\
& 4^{\frac{3}{2}}=(\sqrt{4})^{3}=8
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{5} \cdot 4^{\frac{5}{2}}+\frac{14}{3} \cdot 4^{\frac{3}{2}}-\left(\frac{2}{5} \cdot 1+\frac{14}{3} \cdot 1\right) \\
& =\frac{64}{5}+\frac{112}{3}-\frac{2}{5}-\frac{14}{3}=\frac{62}{5}+\frac{98}{5}
\end{aligned}
$$

eg 12. (ww6) $\int \frac{1}{x^{2}} \cdot \sin \left(\frac{3}{x}\right) \cdot \cos \left(\frac{3}{x}\right) d x$. Hint:

$$
\begin{aligned}
& =\int \cos \left(\frac{3}{x}\right) \cdot \frac{1}{x^{2}} \sin \left(\frac{3}{x}\right) d x \\
& =\int u \cdot \frac{1}{3} d u \\
& =\frac{1}{3} \cdot \frac{1}{2} u^{2}+C \\
& =\frac{1}{6} \cdot\left(\cos \left(\frac{3}{x}\right)\right)^{2}+C
\end{aligned}
$$

$$
\begin{array}{rlrl}
u & =\cos \left(\frac{3}{x}\right) \\
d u & =-\sin \left(\frac{3}{x}\right) \cdot\left(\frac{3}{x}\right)^{\prime} d x . & \text { chair rule } \\
& =-\sin \left(\frac{3}{x}\right) \cdot \frac{-3}{x^{2}} d x & & \text { inner } \frac{3}{x}=3 \cdot x^{-1} \\
& =\sin \left(\frac{3}{x}\right) \cdot \frac{3}{x^{2}} \cdot d x & & \left(3 \cdot x^{-1}\right)=3 \cdot \frac{-1}{x^{2}} \\
\Rightarrow & \frac{1}{3} d u=\sin \left(\frac{3}{x}\right) \cdot \frac{1}{x^{2}} d x &
\end{array}
$$

eg13. $\int \frac{x^{3}}{\sqrt{1+2 \cdot x^{4}}} d x$. Vrgly part: $u=1+2 \cdot x^{4}$, dual) $u=8 \cdot x^{3} d x$
(14 Final)

$$
\begin{aligned}
=\int \frac{1}{\sqrt{1+2 x^{4}}} \cdot x^{3} \cdot d x & \Rightarrow \frac{1}{8} d u=x^{3} \cdot d x \\
=\int \frac{1}{\sqrt{u}} \cdot \frac{1}{8} d u=\int u^{-\frac{1}{2}} \cdot \frac{1}{8} d u & =\frac{1}{-\frac{1}{2}+1} u^{-\frac{1}{2}+1} \cdot \frac{1}{8}+C \\
& =2(u)^{\frac{1}{2}} \cdot \frac{1}{8}+C \\
& =\frac{1}{4} \cdot\left(1+2 x^{4}\right)^{\frac{1}{2}}+C
\end{aligned}
$$

